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The finding of analytical solutions of the relaxation equations for a mixture of 
weakly anharmonic oscillators is of current interest in the qualitative and quantitative 
analysis of the role of anharmonic effects in the theory of lasers [i], chemical kinetics 
[2], in the calculation of kinetic coefficients for slow relaxation [3], in the theory of 
absorption and dispersion of sound, etc. This problem has been solved numerically [4-6] and 
analytically [7] using the single-quantum approximation or diffusion approximation, where 
V--T transitions are taken into account and model expressions for the rate coefficients are 
used. A quasistationary solution has been worked out when V-T, V--V, and V--V' processes are 
considered simultaneously for special initial conditions on the number of quanta [8-9]. 
Relaxation processes in systems with sources of vibrationally excited molecules ate exhaustive- 
ly t~eated (in the harmonic approximation) in [i0]. In the present paper, we use the single- 
quantum approximation to obtain new analytical solutions of vibrational relaxation problems 
in a system of weakly anharmonic oscillations for arbitrary forms of the rate constants and 
a non-Boltzmann heat reservoir. The condition that the ratio of two successive population 
densities is a smooth function of the number of levels is assumed. The analysis shows that 
this approximation is realized under gasdynamical conditions where the diffusion approxima- 
tion is inapplicable since it requires that the distribution function itself be smooth for 
transitions between levels, and on the other hand, many-quanta processes are still unimportant 
and can be taken into account in integral form (e.g., in terms of many-quantum diffusion 
coefficients). Starting from the conventional formulation of the problem [2, 8], we ignore 
the coupling of vibrations and rotations; this coupling can be significant in the presence of 
vibrational--rotational resonances and requires a special treatment. 

i. Distribution Function for V--T Relaxation for a Non-Boltzmann Heat Reservoir. We 
first"consider the vibrational relaxation of a weak solution of diatomic molecules (modeled 
am anharmonic oscillators) in an inert gas. The system of relaxation equations in the single- 
quantum transition approximation has the following form in this case [8]: 

~ = K.+l ,  ~x~+~ - K. ,  ~+~x~ - K~, ~_~x~ + K~_~. ~x~_~ ~ K~(x) ,  ( 1 . 1 )  

where  x n i s  t h e  p o p u l a t i o n  d e n s i t y  o f  t h e  n - t h  v i b r a t i o n a l  l e v e l ,  and t h e  Kmn a r e  r a t e  c o -  
e f f i c i e n t s  wh ich  do n o t  n e c e s s a r i l y  s a t i s f y  t h e  p r i n c i p l e  o f  d e t a i l e d  b a l a n c e  ( i . e . ,  we have  
a n o n - B o l t z m a n n  h e a t  r e s e r v o i r ) .  

The r a t i o  of  t w o - s u c c e s s i v e  p o p u l a t i o n  d e n s i t i e s  can  b e  w r i t t e n  i n  t h e  fo rm 

x . + ~ ( t ) / x . ( t )  = a .  exp (-- ~(t))~ (1 .2)  

where the function ~n(t) is to be determined. We choose the coefficients an in the form 
an = [(nq-i)K~,n-1]/[nKn+1,n] such that we obtain the correct limiting expression'(Kn+1.n = (n 
-~i)K10, an = I) for the case of harmonic oscillators and also the correct limiting expression 
for the case where the effect of anharmonicity on the transition probabilitie s is taken into 
account only through the magnitude of the adiabatic factor [2] (K~+I, n ~ (n+l)K1~ n, e~ = ?-i). 
The coefficients an and functions ~n are assumed to depend smoothly on n. With the use of 
(1.2), the system (i.i) can be rewritten in the form 

xn/x~, = [Kn+t,~an exp ( - -  (Pn) - -  Kn,n-~] [1 - -  Rn,n+~a'~ ~ exp ((p.)] + e~, 

en ~'-- Kn,n-1 [R~-t,~an-1 exp (r R~,n+laTa 1 exp(~n)], Rnm =--- K.m/K~n.  
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When an and ~n depend smoothly on n, it follows that En(t) is small for all values of t 
(Sn(t) << i). We look for an approximate solution of (1.3) in the form 

',,,~L-I K.+I,,> - ' l .~ -'"r,, ( 1 . 4 )  
,~'~ - -  z .  = Cn ' ~" an - - e u  + 1, ) e  j 

where the Cn are arbitrary constants. Substituting (1.4) in (1.3) and ignoring Sn, we find 
an equation for fPn, which can be solved explicitly 

[o " ~  • 

- t l  - e ,,71 , ,d< ~ g,, (0);  X 

-1 n - lK ,~ ,n_ l ( t  a~lRn,n+l) .  ( 1 . 6 )  

Equation (1.6) obviously gives the relaxation time for level n. The constant of integration 
o ~n is found from the initial condition ~ = l~ [anxn(O)/xn+1(O)], and must be determined so that 

a n and ~n depend smoothly on n. It is easy to see that for the weakly anharmonic case, the 
Boltzmann, Trinor, and Gordiets distributions satisfy this condition. 

To find the correction due to the inclusion of Sn, we write the solution of (1.3) in 
the form 

Substituting (1.7) 

xn(t)  = z=(t)/u~(t).  ( l .  7) 

in (1.3) we obtain the equation u n + ~nUn : 0 and thus 

u n ( t ) = e x p { - - n [ l n  anRn+l,neXp (ePn) --  t__ t an-i-lln ~ l - - - - ' e x p  ( IPn-1)-  1 ~ ]I/J" ( 1 . 8 )  

We consider the properties of this solution. For a Boltzmann distribution of harmonic 

o s c i l l a t o r s  a t  t = 0 a n ~- 1, un(t  ) = 1, "Kn+l,n = (n @ 1)K~0 ' T -1~ = Tr 1 : K i n -  K01 , C n = N ~ / K l o  ,- 

(pn(t) =~(t)= ~r ) and (1.4) gives the well-known harmonic oscillator solution Zn(t ) : 

N A (I- exp(--@))exp (--n~) , which is canonically invariant. When t >> m n 

"~ anRn41,n, Un ~ 1, xn (t) -+ Cna~ n [Kn,n-1/n - -  Kn,n+l / (n  + t)l B" n,n+l �9 

Substituting the calculated value of x n into the quasistationary distribution condition 
Xn+a/Xn = Rn,n+1 and also using the normalization relation ~xn =NA, the coefficients C n can 

be determined and thus the quasistationary distribution function can be found for the case of 
a non-Boltzmann heat reservoir. In particular, for a Morse oscillator in a Boltzmann heat 
reservoir 

R n , n q -  1 = exp [ - - (En+ l  - -  E n ) / k T ] ,  En  = nE1 - -  n(n  - -  I ) A E ,  

En+l - -  E~ = E 1 - -  2 n A E ,  E 1 = ~ (~ - -  2~xe), A E  = li.a)Xe 

we o b t a i n  t h e  B o l t z m a n n  d i s t r i b u t i o n  
n 0 

Xn = N A Q  -1 exp (-- E n / k T ) ,  Q = ~ exp (-- E n / k T ) ,  

= N r~--lan6--n(n--1) [Kn,n-1/n -- Kn,n+l/(  n + li] -I, if the C n are chosen in the form Cn AV n 

(1.9) 

(1. lO) 

6 _.---- exp (AL'/kr). 

The approximate solution (1.4) for anharmonic oscillators does not have the property 
of canonical invariance characteristic for harmonic oscillators. 

2. Equation for the Vibrational Energy. We determine the average vibrational energy 
per unit volume of the gas 

E v  (t)  = ~ ~,~x,~ ( t ) .  ( 2 . 1 )  
';"t ~ 0 
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We write Kmn in a form such that the factor characteristic for the rate coefficients of the 
harmonic oscillator case is separated out 

K,,+~,~ = (n i -  l)Ka0A,, K~,,~+~ --- (n -I- ~)Ko~B,,. 

D i f f e r e n t i a t i n g  (2 .1)  w i t h  r e s p e c t  to t and u s i n g  ( 1 . 1 ) ,  ( 1 . 9 ) ,  and ( 2 . 2 ) ,  we o b t a i n  

(2.2) 

'/10 ~0 

Ev -= --  ~, x,,E,,(K, oA,,-~ - -  Ko,B,,) + KolE1 ~_j B~x~ q- 

+ AE ~ [K~oA,~_tx,~n (n - -  t) -- KotB~xan (n + 3)1. 
n = 0  

(2.3) 

Introducing the notation 

"r -1 ~--- ~ x~En (K1 oAn-1 -- KolBn x,~E~ 
n ~ D  

EOv-.~'r "~xn{E1KolB,~ + A E [ ( n - - t )  K,,,,~-x ~S-~{ '~n,n+ljJ~ 
?Z~0 

(2.4) 

relation (2.3) can be written in the form 

( t )  = - 
E v (t) -- E~ (t) 

,~ ( t )  
(2.5) 

o depend weakly on time, this equation describes "fast" relaxation When the quantities T and E V 

of the instantaneous value of the vibrational energy density to a quasiequilibrium value. In 
o this case the relaxation time T and the quasiequilibrium energy density E V can be determined 

by simpler approximate equations. We consider some examples. 

A. For harmonic oscillators we have AE = 0, A n = Bn y i, and (2.5) reduces to the 
�9 0 --i Landau--Teller equation [2, 8] Ev =--(Ev--Er)/~r, xr =KI0--K01, E~ EGrKoIN A. 

B. We take into account the effect of anharmonicity in the rate coefficients only 
through the magnitude of the adiabatic factor (A n = B n = yn) and ignore the nonuniformity of 

the spectrum (E n = nE~) and also ignore the deviation of x n from the Boltzmann distribution 
(I.i0). We then obtain an approximation for the energy relaxation time 

( i _ e - ' ~  2 ~ h~ 
~-1 = --K, ~ ( l  - -  ?e -e)  t ~ ]  ' @ = k-~vi 0 = k-T' ( 2 . 6 )  

_0 wh ich  d i f f e r s  from t h e ' a n a l o g o u s  e x p r e s s i o n  i n  [11]  o n l y  by the f a c t o r  y i n  f r o n t  o f  e 

C. S u b s t i t u t i n g  (2 .2 )  i n t o  ( 1 . 6 ) ,  we o b t a i n  the f o l l o w i n g  compact fo rmu la  f o r  the  
relaxation time of level n: 

.~-~x = K1oAn_ 1 __ KolBn " (2.7) 

showing that the anharmonic corrections alone determine the difference between the relaxation 
time of level n and the energy relaxation time in the Landau-Teller model. In particular, 
when An-s = Bn = yn, we can write T n = TFY-n. Taking into account (2�9 and (2.4) we obtain 

~ - ~ =  ~, T$1XnE '~ xnEn, (2 .8 )  
~ 0  ~ 0  

i.e., the reciprocal of the energy relaxation time in a system of anharmonic oscillators is a 
weighted average of the reciprocals of the relaxation times of the separate levels. In the 
approximation An-1 = Bn = yn we obtain from (2.8) the formula T~ = TF/r, F ~ EynxnEn/ExnEn, 
which, unlike (2.6), is independent of assumptions on the nature of the spectrum�9 One can use 
the following expression for the E~: E~--E~/~+AEL/F=--E~ ~ ~ F/R, where L is chosen so 
that the sum is most closely approximated. Then (2.5) can be written in the form 
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Ev = Ev - -  E~ (2.9) 
T a 

Equation (2.9) shows that for a pulse excitation, the system of anharmonic oscillators 

relaxes faster and can store more vibrational energy than a system of harmonic oscillators. 

3. V--T Relaxation in a System of /Inharmonic Oscillators with a Positive Source of 
Vibrationally Excited Molecules. We consider now the system of equations describing V--T 
relaxation in a weak solution of diatomic molecules (anharmonic oscillators) in a non-Boltz- 
mann heat reservoir with a positive source of strength ~ of vibrationally excited molecules 
with energy Em: 

xn = K,(x) ~ ~5nm, (3.1) 

where Kn(x) has the same form as in (i.i). An approximate solution of (3.1) can be worked 
out in analogy with [I0] for times 0~-~t~ T* (where T* is the action time of the source) 
when the initial distribution is sufficiently smooth 

xn(t) ~ z~(t)/un(t) + tnx~ + gn(O. ( 3 . 2 )  

Here  z n and u n a r e  g i v e n  by ( 1 . 4 ) ,  ( 1 . 5 ) ,  ( 1 . 6 ) ,  and ( 1 . 8 ) ;  x~ i s  t h e  q u a s i s t a t i o n a r y  d i s t r i -  
b u t i o n  normalized to unity and determined from the condition 

Kn~ ) = O, ( 3 . 3 )  

and the gn(t) are excitation functions satisfying the normalization relation ~,gn(t) = 0 �9 

The first term in (3.2) describes relaxation of the initial distribution due to V--T processes; 
the second term shows that an increase in the population density of the vibrational levels due 
to the source comes from multiple scatlering of molecules having a quasistationary distribu- 
tion; the excitation function describes a redistribution of molecular levels due to the com- 
bined effects of the source and the V--T processes. 

For times much larger than the V--T relaxation time (the quasistationary case) the 
solution (3.2) becomes 

where fn 

o lltxO + f . ,  x .  (t) = [Na  ( 0 )  + ~lt] x .  + g .  = 

does  n o t  depend on t ime and i s  n o r m a l i z e d  as f o l l o w s :  

E In - - - ~  NA (0). 

(3.4) 

(3.5) 

The fn are determined by a system of algebraic equations which is obtained by substituting 
O (3.4) into (3.1) with the use of condition (3.3), where Kn(f) = nx n -- ~nm- This system can 

be rewritten in the form 

The solution of 

n {0, n ~ m ,  
O,,= Y,x% 5~,.= t, n > m .  

l=O 

(3.6) can be written in the following form: 

0 0 0 0 s .  = 1o ./xo + E - E o, 
l = 1  l = m + l  

(3.6) 

(3.7) 

where bz = NQJKl+l,z , and fo is determined from the normalization condition (3.5): 

0 0 - -1  0 0 

n ~ l  m ~ l  n ~ m + l / = m + l  

(3.8) 

We note that for low gas temperatures Rn-t,n << 1 for all n and the solution (3.7), 
(3.8) takes the form 
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--I 0 0 0 In "~ ~I/Kn,~-I, n <~ m; I~ ~ ~lK,~,.~-ixJxm -=- B (m) x,~, n > m, 

i.e., as in a system of harmonic oscillators [12], the monoenergy source disturbs the quasi- 

stationary vibrational distribution such that the excitation function fn is quasistationary 
in form for n > m (with a fictitious total number of particles B(m)) and markedly differs 
from the quasistationary distribution for n~ m. 

The equation for the vibrational energy in a system of anharmonic oscillators with a 
delta-function source has the form (2.5), with the only difference being the term hem on the 
right hand side, where in (2.4) it is necessary to use the distribution function (3.2) or 
the quasistationary distribution (3.4). We note that a single-component system of anharmonic 
oscillators, unlike a weak solution of molecules in an inert gas, is characterized by a 
stronger time dependence of the relaxation time, since in this case T-~(t) ~ NA(t) = NA(0) + 
~t. 

4. Vibrational Relaxation in a Binary Mixture of Anharmonic Oscillators. We will de- 
note the population densities of vibrational levels of oscillators A and B by x and y, 
respectively. Then in the approximation of single-quantum processes the system of relaxa- 
tion equations for the A oscillators has the form [8] 

�9 ~ * $ $ 

Xn~_Kn+l,nXu+l __ Kn,n+lxn  __ Kn,n_txa + Kn_l ,nXu_l ,  (4 .1)  

where 

K* -- [K ta'm+l (A, A) xm + r,-m,,,~+t ,A B) Urn], ,,*l,n -- Kn+i,,, (A) + ~ t ~+i,n l~n+l,n V', 
?n  

~+l,~ K m+l'~ (A, B) V ,~+i]. K* Kn ,~+i (A) + ~a [Kn,n+i (A, A) xm+i + ,*,~+l ~ l , n + l  -~"  

(4.2) 

The corresponding relations for the B oscillators are obtained from (4.1) and (4.2) by 

replacing x by y and A by B. 

We write the rate coefficients for V--V and V--V' processes in a form analogous to (2.2) 
where the appropriate harmonic factors are separated out 

Klo (A, A) Cn, "'nztl"n (A, A) (n + l)(m + 1)Kol (A, A)D~, (4 .3 )  K ~'m+l (A, A) = (n + I)(m + 1) ol ,~ Jt,,,,~+l = lo ,,~ 
~+l,n 

uO~ ' A  B)  E ~ ym41,w~ {A ]~) = (n --~ ~) (,tb ~- l) [ ~  (A, B)  F, m. ~ - , " , ' ~ + '  l a  B )  = (n  + i )  ( m  + i )  ~ o  ~ , ,~, ~ , ~ + l  v ~, 

We determine the higher-order moments of the distribution function: 

m __ lo i )  " ~ '  M~IA=--K~ A ) E ( m  + i)C~xm, N AA =Kol(A,  A) ~J(m + D, xm+t, 
_m m 

MAS vo~ (A, B) ~ (re + l) E~ym, ~TA" ut~ (A, B) ~ (m + l) FT}ym+,. 

(4.4) 

Recall that in the harmonic approximation all coefficients C -- F = i and the moments M, 
N are proportional to aA, B which chn be thought of as the average numbers of quanta in mole- 
cules A and B. With the help of (4.2)-(4.4), the system (4.1) can be written in the form 

x~  = (n + i )  x , ~ + i  ~ - -  n x , , G ~ _ l  - -  + + 

where 

M AB ~ K~o(A)An+M~ ~+ ~,  

The equation for the Yn is similar. 

It A = Ko~ (A) B,~ + N AA + N A'. 

Note that for a system of harmonic oscillators (4.6) reduces to 

(4.5) 

(4.6) 
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aj~ -+- a "l ~ [ClO (A)  3 V l.klo {.1, .:[) . 'Vl  ( l  -[- czA) .:- ]C~ t, ( .1 ,  I3 ) .VI I  (]  ~- ~11), 
,t u , - - , ,  u- '  :::: ~,,,~ (. t) i A :,',' (. t , .  t) V.c~., ~- A,',': (. t . / ;1  .v,,,-.,.,: 

with similar expressions for G B and H B. In the harmonic approximation, it is not difficult 
n n 

to obtain from (4.5) the following nonlinear equations for ~B: 

~.t -- - - G ~ A  : H ' t (1 - i  aA), ( 4 . 7 )  

~B = --G~ an + HB( 1 + ~n)~ 

which can be reduced to the form in [2, 8]. In particular, it follows from these equations 

that when TVV << TVV, << TVT and for t = TVV , we have ~A = ~B = 0, i.e., the average number 

of quanta turn out to be constants of the motion. 

We assume now that in the anharmonic approximation the moments G A'B and H A'B can be 
n n 

considered as slow variables. Then in analogy with Sec. i, for a weak deviation from equilib- 

rium (i.e, when a n and @n depend smoothly on n), we find the following solution of (4.5): 

un = e x p  

~ i ~  = I n  

A A 
a n = G n - 1 / G n ,  

1 
_ G n _ 2 / H n _  1 - -  t 

' / A 

e ~-t - -  0-n_1/11 n e ) 

A A 

(4.8) 

(4.9) 

Using the notation introduced above, we obtain 

AA AA ('r~)-* = [K~o (A) A,~_~ --  Ko~ (A) B,~] + IMp_ l - -  Nn ] + 
r ~ . A B  ~'rAB] / A \--1 IT  A "~--i A --1 

+ l~vl , , -~  - -  iv  N J ----- V r ~ v r )  + ~ ,~vvj + ( ~ v v , )  , 

(4.10) 

so that in this approximation the reciprocal of the total relaxation time is the sum of the 
reciprocals of the relaxation times for V--T, V--V, and V--V' processes, which is plausible. 
Taking into account that the moments G~ and G B depend on the time as slow variables, we obtain 

n 
the complete system of equations for the calculation of the distribution function 

G B x .  = a, ( a .  s .  H .%) ,  y,, = a, ( ,,, H.," 

= q o  ,, 

( 4 . 1 1 )  

where the form of ~ is given by (4.8) and (4.9), and the function ~(G) is determined from 
(4.4) through (4.6). We note that the solution (4.8) and (4.9) is only valid when the moments 
GA, B are slowly varying in comparison to the population densities themselves. These func- n 
tions can be found from (4.11). 

When t <<Tn we have from (4.8) and (4.9) 

A . .4 %* .,-,A ! r ,A a n + l  --->- -Tin Kol (A) B n -{- .N, AA -1- ~rAB . .  cO 
0 - . + t s n _ l / 2 1 , ~ ,  _ _  = , ~ ,l K n , n + l ( A )  _ _  ' n ~ l  ( 4 . 1 2 )  

�9 A ] / I A A  , A B  - -  - -  , ~ ,  Xn GAR KlO (A) n-~-" n + Mn K*n+l, n(A) Xn 

which determines the general form of the quasistationary distribution function x n which is 
realized for t >>T n [8, 9]. If V--T processes are dominant such that G~_o~.Kn+I.n(A), /In(M) 

Kn.n+1(N), then we obtain from (4.12) the Boltzmann distribution 
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correct for n > n**(T) 

we obtain from (4.12) 

B , I x ~ = x .  = x~ - E . / k l ) ,  ( 4 . 1 3 )  

A s o  t h a t  V--V p r o c e s s e s  a r e  O o m i n a n t ,  t h e n  [ 2 ] .  If G n -~ 

the Trinor distribution [2] 

o " " oxp (-- •  - -  En/kT) ,  X u  -~- 3C0 (4.14) 

in which the quantities ~ and x: are determined from the normalization condition and from the 
total number of vibrational quanta at the initial instant of time. For a system of harmonic 
oscillators we obtain in this case a relation determining the vibrational temperature T~ of 

the gas [8]: 

h~ =A (4.15) 
0xp - k r # ]  = ~+~x" 

Relations analogous to (4.13) through (4.15) can be written for the B oscillators. When 
V--V, V--V', and V--T processes are all taken into account, we obtain from (4.12) in the an- 
harmonic case a more complicated distribution of the Gordiets type [2], and in the harmonic 
case we obtain a relation determining the relaxation of the vibrational temperatures of 
the separate subsystems; this is not discussed here. 

We note that according to (4.10), the relaxation time of level n is now determined by 

the smallest of the times TnVT, TnVV, TnVV' ; after a time of this order the quasistationary 
distribution given by (4.12) is realized. Our treatment will obviously be valid when the 
moments GA, B and HA, B change only slightly in this time interval. This will be true for a 

n n 
small initial number of quanta; in this case the change in the number of quanta can be de- 
scribed approximately by (4.7). In the case where the moments GA, B and HA, B cannot be con- 

n n 

sidered as slow variables, nonstationary solutions are more difficult to obtain. 

Thus in the approximation of single-quantum processes, one can follow the time evolution 

of a smooth initial distribution for arbitrary forms of the rate coefficients. The solution 
tan be used directly to form the dynamical equations of molecular gases for the case of slow 
relaxation. The ideas used here apparently also apply for the treatment of rotational relaxa- 
tion; however in this case it is necessary to know the nature of the dependence of the 

rotational excitation rate constants on quantum number. 

The analysis given here is one method of treating energy level kinetics in the diffusion 
approximation formulated in general form in [3]. The combination of these two approaches ex- 
pands the analytical methods available for studying relaxation phenomena in molecular gases. 

Addendumt After preparation of the manuscript, we obtained a more accurate solution of 
the system (i.i) using the ideas of Sec. i. If we write the ratio of two successive levels in 

the form 

xn+i(t)/xn(t)  = (Kn,n+i/K~+l,n)/n(t)  = bnln(t), ( A . 1 )  

where the functions fn are to be determined, and substitute (A.I) into (i.i), we obtain 

bn_i( ln_ixn_i  ~- x ,~ - l~ - t )  = [Kn+l..b,~b,~-~f,Jn-1 - -  (Kn.n+i  + Kn.n-~)bn-i] ,~-t  @ "K,~-I.~ ]x~-~. 

From (I.i) we have xn-i = Kn-i(x). Therefore, using (l.l) and (A.I), we can derive the 

following system of equations for the fn: 

~. (t)  = K . , ~ - ~  ( i  - -  M / ~ - 0  - -  K . + l , . + 2 ~  ( i  - -  l.+~ll~), 
~n = (Kn+i ,n  - -  K~, . - i ) / (Ka+i , .+~ - -  Kn,a+l) .  

When the fn depend smoothly on n, the quantity ~n(t) is small for all t. 

quantity, we find the explicit solution of (A.2) 

(A. 2) 

Ignoring this 
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--l/T" ( t -- 1,,) [~,, + I0L --[;n (A. 3) 
1,~ ( 1 )  = ~ " 

I' . 0 O -- 

t ~, t _ K,L~ I,,~ -- KT~t l,nl • I Kn,~+, -- K,~ ,L-I. 

The constants of integration fo are determined in terms of the initial conditions with the 
n 

help of (A.I) as bnf n = Xn+1(0)/Xn(0). 

The population densities x n can be expressed in terms of the fn with the help of n 
applications of (A.I): 

n--1 [ ~"0 n--1 "]--1 
xn(t)=xo(t ) Iibk/~<l), xo ( t ) :N  t[ +n~=lh~=obJh(t)J . (A.4)  

k=O 

It is easy to see that the solution (A.4) has all of the properties of the solution (1.5) 
to (1.8), but is also applicable for less smooth distributions. It can be used in Secs. 2 
througb 4. 
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